p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
↳ QTRS
↳ DependencyPairsProof
p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(a1(a1(x0)), p2(b1(x1), x3))
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(b1(x1), x3)
p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(a1(a1(x0)), p2(b1(x1), x3))
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(b1(x1), x3)
p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(a1(a1(x0)), p2(b1(x1), x3))
p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(a1(a1(x0)), p2(b1(x1), x3))
Used ordering: Polynomial Order [17,21] with Interpretation:
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
POL( P2(x1, x2) ) = max{0, x2 - 1}
POL( a1(x1) ) = max{0, -2}
POL( b1(x1) ) = x1 + 1
POL( p2(x1, x2) ) = 2x2 + 1
p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
P2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> P2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))
p2(a1(x0), p2(b1(x1), p2(a1(x2), x3))) -> p2(x2, p2(a1(a1(x0)), p2(b1(x1), x3)))